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Homo heuristicus and the 
Bias – Variance Dilemma
Henry Brighton and Gerd Gigerenzer

Introduction

Homo heuristicus makes inferences in uncertain environments using 
simple heuristics that ignore information (Gigerenzer and Brighton, 
2009). Traditionally, heuristics are seen as second-best solutions which 
reduce effort at the expense of accuracy, and lead to systematic errors. 
The prevailing assumption is that, to understand the ability of humans 
and other animals to cope with uncertainty, one should investigate cog-
nitive models that optimize. We introduced the term Homo heuristicus 
to highlight several reasons why this assumption can be misleading, 
and argue that heuristics play a critical role in explaining the ability 
of organisms to make accurate inferences from limited observations of 
an uncertain and potentially changing environment. In this chapter 
we use examples to sketch the theoretical basis for this assertion, and 
examine the progress made in the development of Homo heuristicus as a 
model of human decision-making.

What are heuristics and why study them?

Although frustratingly little detail is known about the mechanisms 
used by organisms to make inferences, illuminating insights into ani-
mal decision-making do exist. The ant species Leptothorax albipennis 
inhabit flat rock crevices, and select their nest site from a range of alter-
natives by estimating the relative area of potential nest using a heuris-
tic. First, an ant will run around a potential nest on an irregular path for 
a fixed period of time while laying down a pheromone trail, and then 
leave. Later, the ant returns and runs around on a different irregular 
path, and then estimates the size of the site using the frequency with 
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which it reencounters the old trail. This heuristic is remarkably precise: 
nests half the area of others yielded reencounter frequencies 1.96 times 
greater (Mugford et al., 2001). Peahens also use a heuristic when choos-
ing among potential mates. Rather than examining all the available 
peacocks, a peahen will investigate only three or four, and then choose 
the one with the largest number of eyespots (Petrie and Halliday, 1994). 
These two examples illustrate how organisms solve problems in an 
uncertain world using heuristics (see Hutchinson and Gigerenzer, 2005, 
for further examples).

What is a heuristic? The examples above highlight two hallmarks of 
heuristics: one-reason decision-making and limited search. Specifically, 
peahens could in principle integrate many features which describe 
potential mates, such as their size, dominance within the group, or vol-
ume of mating call. Instead, they use just one feature. Peahens could also 
exhaustively examine all the potential mates, but they instead consider 
just a handful. In the same way, ants tend to revisit potential nest sites 
a couple of times, rather than repeatedly approximating reencounter 
frequency. More generally, heuristics are best seen in contrast to opti-
mization processes, which attempt to gather all available information, 
integrate this information, and derive predictions based on potentially 
complex models of the underlying processes which govern the obser-
vations. Heuristics, in contrast, are examples of what Herbert Simon 
(e.g., 1955; 1991) referred to as satisficing processes (a Northumbrian 
word for “satisfying”). Satisficing is the process of seeking a good-
enough solution rather than seeking an optimal solution. For example, 
when selecting a good alternative from a series of options encountered 
sequentially, a satisficer might set an aspiration level, choose the first 
option that meets or exceeds this aspiration level, and then terminate 
search. Although heuristics tend to consume fewer processing resources 
as a result of ignoring information, this does not mean that they are 
less accurate than processes which consume more processing resources. 
Before considering these issues in greater detail, it is worth spelling out 
the relationship between optimal solutions, optimizing processes, and 
uncertainty.

Optimal solutions vs. the process of optimization

Consider a tin can manufacturer attempting to reduce costs by mini-
mizing the surface area of the cans it produces. To package 12 ounces 
of soup, the manufacturer has calculated the height and width of the 
can which minimizes the amount of tin used. No other design uses less 
tin to package the same soup. This is an example of an optimal solution 
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to a problem: from the space of candidate solutions, the optimal solu-
tion is one which cannot be improved on. In this example, the rela-
tionship between the variables in question and the solution is certain. 
Solid geometry, coupled with the ability to take precise measurements, 
ensures a close fit between our model and the real world. The term 
“optimal” refers to such a state, but the term “optimization” refers to 
the process of searching for the optimal state. If we lacked knowledge of 
solid geometry, iteratively fine-tuning the tin can dimensions until the 
surface area is at a minimum would be a process of optimization. This 
process assumes that we can the measure the effect of our actions, and 
this measure serves as a proxy for performance. If we had knowledge of 
solid geometry, then we could derive the optimal solution directly. Both 
are examples of optimization.

Broadly speaking, optimization is any process which explicitly 
attempts to maximize some criterion assumed to be monotonically 
related to performance. As a consequence, optimization methods have 
a tendency to assume that more computation leads to greater precision. 
Optimization models are common in the study of cognition. Neural 
network models of cognition, for instance, usually rely on algorithms 
which attempt to minimize the error of the network by iteratively fine-
tuning the strength of its synaptic weights (Rumelhart et al., 1986). 
While optimization is certainly a valid, widely practiced, and successful 
approach, it is not the only approach. Following Simon, we will use the 
term satisficing to refer to processes which do not optimize. Heuristics 
are precise specifications of these non-optimizing solutions (Gigerenzer 
et al., 1999).

Beyond optimization

Optimization methods are both widely studied and successful. Why, 
then, study heuristics? First of all, we may observe an organism satisfic-
ing, and focus on uncovering a precise understanding of the heuristic 
mechanism used by the organism. These findings lead naturally to the 
question of how ubiquitous satisficing mechanisms are in the natural 
world, and spur the search for underlying functional and information 
processing principles explaining why and how organisms might satis-
fice. For instance, the most common justification for heuristic process-
ing is reduced resource consumption. Organisms consume resources 
such as time and energy when processing information, and, because 
these resources are limited, it is reasonable to assume a trade-off exists 
between accuracy and effort. Heuristics, according to this view, allow 
the decision-maker to make accurate inferences without expending 
the additional resources required to make the best inferences. This 
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justification is widely accepted, and rooted in the commonly assumed 
principle of the accuracy–effort trade-off:

Accuracy–effort trade-off: information and computation cost time 
and effort; therefore minds rely on simple heuristics that are less accu-
rate than strategies that use more information and computation.

Much of the following discussion will center on more fundamental rea-
sons for examining heuristics. First, some problems are computationally 
intractable, and require, of necessity, decision-makers to satisfice. For 
instance, no human or machine can implement the optimal chess-play-
ing strategy, due to its explosively large search space. For such problems, 
the only option may be to use heuristics. Second, another reason to 
look beyond optimization is the inherent uncertainty of natural envi-
ronments. Organisms regularly face problems for which the optimal 
solution – the underlying data generating distribution, for example – is 
unknown or unknowable. Optimization in a world which is uncertain 
in this way is still possible, but less appealing, since we must knowingly 
optimize a misspecified criterion. Issues such as these open the door 
to alternative, potentially more appropriate, and superior information-
processing models. This possibility leads to another reason for studying 
heuristics, which is to identify and explain less-is-more effects:

Less-is-more effects: more information or computation can decrease 
accuracy; therefore, minds rely on simple heuristics in order to be 
more accurate than strategies that use more information and time.

The occurrence of less-is-more effects tells us that strategies which 
ignore information and limit search have the potential to better explain 
how organisms make accurate inferences in uncertain environments. 
Next, we will explore less-is-more effects, and work toward the study of 
the ecological rationality of heuristics, which examines in which envi-
ronments a given strategy succeeds or fails, and why. These issues form 
part of a broader research program which aims at a systematic theory of 
heuristics that identifies their building blocks and the evolved capaci-
ties they exploit, and views the cognitive system as relying on an “adap-
tive toolbox” of heuristics.

Less-is-more effects

The term heuristic is often used with a negative connotation, suggest-
ing a second-best solution to a problem better addressed by a more 
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principled, optimizing solution. The use of heuristics by people, accord-
ing to this view, explains a number of human reasoning errors. The 
“Heuristics and biases” approach of Daniel Kahneman, Amos Tversky, 
and their collaborators emphasized that heuristics are sometimes good 
and sometimes bad, but placed a heavy focus on experiments designed 
to show that people often violate laws of logic, probability, or some 
other standard of rationality (Tversky and Kahneman, 1974). The asso-
ciation between heuristics and shoddy mental software is rooted in 
three widespread misconceptions:

Heuristics are always second-best.1. 
We use heuristics only because of our cognitive limitations.2. 
More time, more information, and more computation would always 3. 
be better.

These three beliefs assume that the accuracy–effort trade-off, described 
above, holds. The inaccuracy of this overly simplistic picture can be 
demonstrated by considering perhaps the most widely used statistical 
model: the linear model fitted using least squares. Use of linear regres-
sion has become automatic among sociologists, economists, and psy-
chologists when making inferences about their observations. Linear 
regression estimates the optimal beta weights for the predictors. In the 
1970s, researchers discovered that unit weights (−1 or 1), or even ran-
dom weights, can predict almost as accurately as, and sometimes bet-
ter than, multiple linear regression (Dawes, 1979; Dawes and Corrigan, 
1974; Einhorn and Hogarth, 1975; Schmidt, 1971). These less-is-more 
phenomena came as a surprise to the scientific community. When 
Robin Dawes presented the results at professional conferences, distin-
guished attendees told him that they were “impossible,” his paper with 
Corrigan was first rejected and deemed “premature;” a sample of recent 
textbooks in econometrics revealed that none referred to the findings 
of Dawes and Corrigan (Hogarth, in press).

Before taking a closer look at less-is-more effects, what exactly does 
“more” refer to in the term “less-is-more?” For problems of inductive 
inference, the decision-maker’s task is to process a series of observa-
tions with a view to identifying patterns of regularity among these 
observations. Identifying systematic regularities allows the decision-
maker to make accurate predictions about novel or future observations. 
Consider, for instance, a weather forecaster observing past tempera-
ture trends in an attempt to spot a pattern which can be used to make 
better predictions. Problems like these highlight a crucial distinction 
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between two kinds of accuracy. First, data fitting is the ability to accu-
rately describe already observed data. Experts find it alarmingly easy to 
explain, post hoc, why several hurricanes occurred in the previous year, 
or why the stock market crashed. Data prediction is much harder, and 
tells us to evaluate weather forecasters and financial experts by taking 
note of their past predictions, and checking how accurately they in fact 
predicted future events. Data prediction is the true test of a decision-
maker’s ability to make inductive inferences. In exactly the same way, 
an organism’s inference mechanisms should help to accurately second-
guess future events in its environment, rather than accurately describe 
past events. In short, when we refer to less-is-more effects in inductive 
inference, the “more” will refer to predictive accuracy, and the “less” will 
refer to various forms of ignoring information and limiting search.

Further less-is-more effects

Using predictive accuracy as the performance criterion, Czerlinski 
et al. (1999) conducted 20 studies comparing unit weighted regres-
sion (also known as tallying) and multiple regression. The models were 
compared using cross-validation, a process which repeatedly partitions 
the observations into one set used to estimate the model parameters, 
and another set used to measure the predictive accuracy of the fitted 
models (Stone, 1974). Specifically, Czerlinski et al. examined paired 
comparison tasks in which, for instance, the problem is to estimate 
which of two Chicago high schools will have a higher drop-out rate, 
based on cues such as writing score and proportion of Hispanic stu-
dents. Ten of the 20 data sets were taken from a textbook on applied 
multiple regression (Weisberg, 1985). Averaged across all data sets, tal-
lying achieved a higher predictive accuracy than multiple regression 
(Figure 3.1). Regression tended to overfit the data, as can be seen by the 
cross-over of lines: it had a higher fit than tallying, but a lower predic-
tive accuracy.

These results illustrate that under certain circumstances tallying 
leads to higher predictive accuracy than multiple regression. They also 
illustrate that claims of universal superiority of one statistical model 
over another are rarely, if ever, true. Instead, they highlight the need 
to know in which environments simple tallying is more accurate 
than multiple regression, and in which environments it is not. This 
is the question of the ecological rationality of tallying. Early attempts 
to answer this question concluded that tallying succeeded when lin-
ear predictability of the criterion was moderate or small (R2≤ 0.5), the 
ratio of objects to cues was 10 or smaller, and the cues were correlated 
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(Einhorn and Hogarth, 1975). The discovery that tallying can often 
match and even outperform complex calculations is important in 
understanding the nature of adaptive cognition. To what extent do 
findings such as these provide hints as to how the cognitive system 
makes inferences with the limited resources it has available? Note that 
the conditions under which tallying succeeds – low predictability of a 
criterion, small sample sizes relative to the number of available cues, 
and dependency between cues – is highly relevant for decision-making 
in natural environments.

Restricting attention to unit weights is one of many approaches to 
simplifying the basic linear model. Another simplification is to restrict 
attention to only a single cue when making decisions. The heuristic 
take-the-best uses this simplification when deciding between objects 
in a paired comparison task. First, take-the-best estimates the validity 
of each cue. Cue validity is the proportion of correct inferences the 
cue makes on previously observed comparisons. To make inferences 
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Figure 3.1 Less-is-more effects. Both tallying and take-the-best predict more 
accurately than multiple regression, despite using less information and compu-
tation. Note that multiple regression excels in data fitting (“hindsight”), that 
is, fitting its parameters to data that is already known, but performs relatively 
poorly in prediction (“foresight,” as in cross-validation). Take-the-best is the most 
frugal, that is, it looks up, on average, only 2.4 cues when making inferences. In 
contrast, both multiple regression and tallying look up 7.7 cues on average. The 
results shown are averaged across 20 studies, including psychological, biologi-
cal, sociological, and economic inference tasks (Czerlinski et al., 1999).
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on novel, unobserved comparisons, take-the-best searches the cues in 
validity order sequentially until it finds a discriminating cue. A cue dis-
criminates when the objects in question have different values for this 
cue, and therefore allow a decision to be made. Take-the-best always 
makes decisions on the basis of a single discriminating cue, although 
several cues may be examined before this cue is chosen. Figure 3.1 com-
pares the performance of take-the-best with tallying and linear regres-
sion. Again, a less-is-more effect can be seen, but now the effect is more 
dramatic: take-the-best performs poorly in fitting the observations, but 
achieves a higher predictive accuracy than both tallying and linear 
regression.

Some researchers hypothesized that these less-is-more effects exploit 
the weakness of linear regression as a competitor. To address this point, 
we compared take-the-best with four additional inference strategies 
(Brighton, 2006). First, the nearest neighbor classifier is a nonlinear, 
widely used, and widely studied classification method which is known 
to perform well across many domains (Cover and Hart, 1967). Second, 
the tree induction algorithm C4.5 is also widely studied and explicitly 
attempts to combat the problem of overfitting by pruning the decision 
trees it induces (Quinlan, 1993). Third, we compared take-the-best with 
another tree induction algorithm, CART, which tends to produce yet 
smaller trees than C4.5 (Breiman et al., 1994). Fourth, take-the-best will 
be compared with a slightly modified version of itself – greedy take-the-
best – which commits the additional resources required to assess con-
ditional dependencies between cues (Martignon and Hoffrage, 2002; 
Schmitt and Martignon, 2006). This variant of take-the-best orders 
cues by taking into account that cue validities, when estimated con-
ditionally on the value of other cues, can differ from the basic validity 
estimates used by take-the-best. These estimates of conditional validity 
result in the induction of cue orders which differ from those selected 
by take-the-best.

Figure 3.2 compares the performance of take-the-best with these 
four alternative strategies in four environments taken from the 
Czerlinski et al. (1999) study. In all four environments, take-the-best 
outperforms the alternative mechanisms for most, if not all, sample 
sizes. Two points are worth making here. First, the less-is-more effects 
shown in Figure 3.1 and Figure 3.2 are to a certain degree robust, 
rather than hinging on a potentially “straw man” comparison with 
linear regression. Second, and more generally, it is statistically obvious 
that in some environments, and against some competitors, take-the-
best (like any other model of inductive inference) will perform poorly. 

AQ1
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Figure 3.2 The performance of take-the-best in comparison to three well-
known learning algorithms (nearest neighbor classifier, C4.5, and CART) and 
the greedy version of take-the-best, which orders cues by conditional validity. 
Mean predictive accuracy in cross-validation is plotted as a function of the size 
of the training sample for the task of deciding (a) which of two German cit-
ies has the larger population; (b) which of two houses has the higher price; (c) 
which of two Galapagos islands has greater biodiversity; and (d) which of two 
mammals is likely to live longer. These environments are taken from the study 
by Czerlinski et al. (1999).

As we noted above, the real question is to understand when and why 
certain forms of processing perform well, and when and why they 
perform poorly. Of particular interest here is the question of when 
and why ignoring information leads to superior performance, as we 
saw above.
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Explaining less-is-more effects

Understanding Homo heuristicus requires understanding when and why 
less-is-more effects hold, and how an organism might exploit the exist-
ence of less-is-more effects as part of its design. The policies of simplify-
ing weights and one-reason decision-making both reduce effort. They 
also increase accuracy, clearly demonstrating that the effort–accuracy 
trade-off is invalid as a general rule. Findings like these provide hints as 
to how organisms might make inferences in uncertain environments, 
where the task is to use limited observations to second-guess the predic-
tive patterns underlying the observations. To understand the function-
ing of heuristics, we will again consider the task faced by a weather 
forecaster.

Over- and underfitting

The temperature in London on a given day of the year is uncertain but 
follows a seasonal pattern. Using the year 2000 as an example, we have 
plotted London’s mean daily temperature in Figure 3.3(a). On top of 
these observations we have plotted two polynomial models that attempt 
to capture a systematic pattern in London’s temperatures. The first 
model is a degree-3 polynomial (a cubic equation with four parameters), 
and the second is a degree-12 polynomial (which has 13 parameters). 
Comparing these two models, we see that the degree-12 polynomial 
captures monthly fluctuations in temperature while the degree-3 poly-
nomial captures a simpler pattern charting a rise in temperature that 
peaks in the summer, followed by a slightly sharper fall.

If the weather forecaster is only interested in describing the past as 
accurately as possible, then picking the polynomial model that fits the 
data with the least error is the best option. This criterion would prefer 
the degree-12 polynomial. More generally, to maximize goodness of 
fit, higher and higher-degree polynomials could be chosen, with each 
added degree improving the ability of the model to capture minor fluc-
tuations in temperature over smaller and smaller timescales. If London’s 
daily temperatures for all subsequent years were guaranteed to match 
precisely those measured in the year 2000 then this approach would 
be ideal, because what we have observed in the past will continue to be 
observed in the future, and by describing the past more accurately, as 
with a higher-degree polynomial, we will also describe the future more 
accurately. The future is certain in this hypothetical world. As soon as 
uncertainty enters the picture, using goodness of fit to judge this ability 
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is a dangerous practice which will often lead to faulty conclusions (Pitt 
et al., 2002; Roberts and Pashler, 2000).

To estimate how well different models predict the future, based on 
observations of the past, we can reframe the task by estimating model 
parameters using only a sample of the observations and then test how 
well such models predict novel instances of the problem. More specifi-
cally, if we observe the temperature on 50 randomly selected days in the 
year 2000 and then fit a series of polynomial models of varying degree 
to this sample, we can measure how accurately each model goes on to 
predict the temperature on those days we did not observe in the year 
2000. As a function of the degree of the polynomial model, the mean 
error in performing this prediction task is plotted in Figure 3.3(b). The 
model with the lowest mean error (with respect to many such samples 
of size 50) is a degree-4 polynomial – which shows that more complex-
ity is not better. In short, Figure 3.3(b) tells us that the error in fitting 
the observations decreases as a function of the degree of the polyno-
mial, which means that the best-predicting model would not have been 
chosen if we had judged models merely by checking how well they fit 
the observations. The most predictive model is very close to the lower 
bound of complexity, rather than at some intermediate or high level.

The bias–variance dilemma

Understanding how properties of a decision-maker’s learning algorithm 
interact with properties of its task environment is a crucial step toward 
understanding how organisms can deal with uncertainty and error. To 
understand this problem we will adopt the perspective of an omniscient 
observer and consider the bias–variance dilemma (Geman et al., 1992; 
Hastie et al., 2001), a statistical perspective on the problem of inductive 
inference that decomposes prediction error into three components: a 
bias component, a variance component, and a noise component. Total 
prediction error is the sum of the following three terms:

Error = (bias)2 + variance + noise

This decomposition clarifies different sources of error, and how they 
are related to the properties of the learning algorithm. To illustrate this 
relationship, we will revisit the daily temperature example but change 
the rules of the game. The “true” underlying function behind London’s 
mean daily temperatures is unknown. Nevertheless, we will put our-
selves in the position of grand planner with full knowledge of the 
underlying function for the mean daily temperatures in some fictional 
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Figure 3.3 Plot (a) shows London’s mean daily temperature in 2000, along with 
two polynomial models fitted using the least squares method. The first is a 
degree-3 polynomial, the second a degree-12 polynomial. Plot (b) shows both 
the mean error in fitting samples of 30 observations and the mean prediction 
error of the same models, both as a function of degree of polynomial.
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location. We denote this degree-3 polynomial function h(x) and define 
it as

2 315 120 130
( ) 37

365 365 365
h x x x x� � � � , where 0 364.x� �

Figure 3.4(a) plots this underlying trend for each day of the year. We 
will also assume that, when h(x) is sampled, our observations suffer 
from normally distributed measurement error with μ = 0 and �2 = 4. 
A random sample of 30 observations of h(x) with this added error is 
shown on top of the underlying trend in Figure 3.4(a). If we now fit a 
degree-p polynomial to this sample of observations, and measure its 
error in approximating the function h(x), can we draw a conclusion 
about the ability of degree-p polynomials to fit our “true” temperature 
function in general? Not really, because the sample we drew may be 
unrepresentative: it could result in a lucky application of our fitting 
procedure that perfectly models the underlying polynomial h(x), or an 
unlucky one which results in high error. This single sample may not 
lead to a representative picture of the performance of degree-p polyno-
mials in general, after other samples are taken into account.

A more reliable test of a model is to measure its mean accuracy by 
taking k random samples of size n, fitting a degree-p polynomial model 
to each one, and then considering this ensemble of models denoted 
by y1(x), y2(x), ... , yk(x). Figure 3.4(b) shows five polynomials of degree 
2 resulting from k = 5 samples of n = 30 observations of h(x). From the 
perspective of the organism, these samples can be likened to separate 
encounters with the environment, and the fitted polynomials likened 
to the responses of the organism to these encounters. The question now 
is how well a given type of model – here polynomials of degree 2 – 
 captures the underlying function h(x), which we can estimate by seeing 
how well the induced models perform on average, given their individual 
encounters with data samples. First consider the function ȳ(x), which 
for each x gives the mean response of the ensemble of k polynomials:

1
( ) ( ).iy x y x

k
= ∑

The bias of the model is the sum squared difference between this mean 
function and the true underlying function. Our omniscience is impor-
tant now, because to measure the difference we need to know the under-
lying function h(x). More precisely, bias is given by

{ }22( ) ( ) ( ) .n nbias = y x h x−∑
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Figure 3.4 A fictional daily temperature function h(x) used to illustrate bias and 
variance. (a) Graph of h(x) and a sample of 30 points with added noise. (b) Five 
polynomials of degree-2, yi(x) for 1 ≤i≤ 5, fitted to five further samples. (c) Mean 
of these five functions, ȳ(x). Bias is the squared difference between h(x) and ȳ(x). 
Variance is the sum of the squared difference between each function yi(x) and 
ȳ(x), measuring how much the induced functions vary about their mean. Plot (d) 
shows, as a function of degree of polynomial, the mean error in predicting the 
temperature on those days not in the observed samples, after fitting polynomi-
als to samples of 30 noisy observations. This error is decomposed into bias and 
variance, also plotted as function of degree of polynomial.

Figure 3.4(c) shows the ȳ(x) arising from the five polynomials shown 
in figure 3.4(b). Assuming k = 5 is sufficient to provide us with a good 
estimate of ȳ(x), this plot tells us that the model is biased, since it differs 
from h(x). Zero bias is achieved if our average function is precisely the 
true function. Bias usually occurs when the model we use to explain the 
observations lacks the appropriate functional form to represent the true 
underlying function. In the absence of knowledge about the underlying 
function, bias can be reduced by making the space of models considered 
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by the learning algorithm sufficiently rich. However, this policy can 
simply replace one problem with another. Although the mean function 
response of the ensemble may capture the true underlying function 
without error, the individual models that contribute to this mean may 
each incur high error. That is, zero mean error can mask high error of 
the individual models. This source of error, which arises from the sensi-
tivity of the learning algorithm to the contents of individual samples, is 
termed variance. Variance is the mean squared difference between each 
induced model function and the mean function:

variance = { }21
( ) ( )n n

i
n

y x y x
k

−∑ ∑ .

When variance increases as we consider more complex models, we say 
that these models are overfitting the data. The two properties of bias and 
variance reveal that the inductive inference of models involves a funda-
mental trade-off. We can aim to use a general purpose learning algorithm, 
such as a feed-forward neural network, that employs a wide and rich space 
of potential models, which more or less guarantees low bias. But, when we 
have a limited number of observations, the flexibility of the model space 
can incur a cost in high variance, since the learning algorithm is likely to 
induce a model that captures unsystematic variation. To combat high var-
iance we can place restrictions on the model space and thereby limit the 
sensitivity of the learning algorithm to the vagaries of samples. But these 
restrictions run counter to the objective of general purpose inference, 
since they will necessarily cause an increase in bias for some problems.

This is the bias–variance dilemma. The balancing act required to 
achieve both low variance and low bias is clear in figure 3.4(d), which 
decomposes the error arising from polynomials from degree 1 (a 
straight line) to degree 10 at predicting our temperature function h(x) 
from samples of size 30. For each polynomial degree we have plotted 
the bias (squared) of this type of model, its variance, and their sum. The 
polynomial degree that minimizes the total error is, not surprisingly, 
3, because h(x) is a degree-3 polynomial. Polynomial models of less 
than degree 3 suffer from bias, since they lack the ability to capture the 
underlying pattern. Polynomials of degree 3 or more have zero bias, as 
we would expect. But for polynomials of degree 4 or more the problem 
of overfitting arises, and their variance begins to increase due to their 
excess complexity. None of the models achieve zero error. This is due to 
the observation error we added when sampling, which corresponds to 
the noise term in the bias–variance decomposition.
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Heuristics and the bias–variance dilemma

Bias and variance provide an insightful framework for examining the 
inference tasks faced by organisms. In particular, how do organisms 
control bias and variance, and keep them within acceptable limits? More 
specifically, how can the functioning of heuristics be understood in 
these terms? Recall Figure 3.1 and Figure 3.2, which showed how take-
the-best outperformed several alternative inference strategies. Now we 
will analyze take-the-best by performing a bias–variance decomposition 
of its error. We will also decompose the error of its greedy counterpart, 
which we described above. As seen in Figure 3.2, the performance of the 
neural, exemplar, and decision tree models tend to be very similar to 
each other in paired comparison tasks, which in turn are very similar to 
the performance of the greedy version of take-the-best. Consequently, 
the performance of the greedy version of take-the-best provides a good 
proxy for the behavior of a number of alternative models of inductive 
inference.

Two artificially constructed environments will be used to compare the 
strategies. Both environments, therefore, will be governed by a known 
underlying functional relationship between the cues and criterion. 
Knowing these functional relationships will allow us to perform a bias–
variance decomposition of the prediction error of the two strategies. 
The first environment is an instance of the class of binary environments, 
where the validity of the cues follows a noncompensatory pattern, and 
all cues are uncorrelated. An environment has a noncompensatory pat-
tern when the validity of the cues decays rapidly as a function of their 
rank in the cue order. Noncompensatory environments are one example 
of a class of environments for which we have analytic results showing 
that take-the-best is unbiased and likely to perform well (Katsikopoulos 
and Martignon, 2006; Martignon and Hoffrage, 2002). The second envi-
ronment used in our comparison, however, is an instance of the class of 
Guttman environments, inspired by the Guttman scale (Guttman, 1944), 
in which all the cues are maximally correlated with criterion, and all 
have a maximum validity of 1. Formal definitions and illustrations of 
both these environments are provided in Appendix 1 of Gigerenzer and 
Brighton (2009).

Figure 3.5(a–d) plots, for both of these environments, the predic-
tion error achieved by take-the-best and its greedy counterpart. The 
performance of each model is shown separately in order to clearly 
distinguish the bias and variance components of error, which, when 
added together, comprise the total prediction error. Three findings are 
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revealed. First, in the binary environment, take-the-best performs worse 
than its greedy counterpart. This result illustrates that analytic results 
detailing when take-the-best is unbiased will not necessarily help to 
explain when take-the-best performs well. Second, in the Guttman 
environment, take-the-best outperforms its greedy counterpart. This 
result illustrates that proving that another strategy achieves a better fit 
than take-the-best is something quite different from proving that the 
strategy also achieves a higher predictive accuracy. Third, and perhaps 
most importantly, Figure 3.5 reveals that both of these behaviors are 
driven by the variance component of error, and the relative ability of 
the two strategies to keep variance within acceptable limits. Bias plays 
almost no role in explaining the difference in performance between the 
models, and the less-is-more effect we demonstrated in Figure 3.2 can 
also be explained by the relative ability of the models to control vari-
ance. In short, this comparison tells us that take-the-best bets on the 
fact that ignoring dependencies between cues is likely to result in low 
variance. Model comparisons in natural environments show that this 
bet is often a good one. But, as this comparison has revealed, the bet 
can also fail, even when take-the-best has zero bias.

At this point, it is important to note that the concepts of bias and vari-
ance have allowed us to move beyond simply labeling the behavior of an 
induction algorithm as “overfitting the data,” or “suffering from excess 
complexity,” because the relative ability of two algorithms to avoid these 
pathologies will always depend on the amount of data available. First of 
all, from the perspective of bias, take-the-best offers no advantage over 
the alternative methods we have considered, because practically all mod-
els of inductive inference are capable of capturing the same systematic 
patterns in data as take-the-best. Consequently, if a heuristic like take-
the-best is to outperform an alternative method, it must do so by incur-
ring less variance. Second, the variance component of error is always an 
interaction between characteristics of the inference strategy, the structure 
of the environment, and the number of observations available. Thus, say-
ing that a heuristic works because it avoids overfitting the data is only 
a shorthand explanation for what is often a more complex interaction 
between the heuristic, the environment, and the sample size.

Bias, variance, and cognition

Organisms experience a limited number of observations, and cannot 
be expected to know, or possess the ability to model, underlying envi-
ronmental regularizes without error. The former constraint tells us 
that an organism’s inference mechanisms must control the variance 

AQ2
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Homo heuristicus and the Bias – Variance Dilemma 85

component of error in order to make accurate inferences, while the lat-
ter constraint tells us that bias is inevitable. Taken together, considera-
tions of bias and variance suggest that the apparent ability of humans 
and other animals to generalize accurately from limited observations 
of an uncertain environment is likely to hinge on the use of biased 
inference mechanisms which excel at limiting variance. Our analysis of 
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Figure 3.5 An illustration of the role played by variance in the performance of 
take-the-best. Plots (a) and (b) illustrate that, in Guttman environments, take-
the-best outperforms the greedy variant of this heuristic, which orders cues by 
conditional validity. The performance difference is due to variance alone. Plots 
(c) and (d) illustrate that variance also explains why take-the-best is outper-
formed in binary environments. In both cases, take-the-best is unbiased and the 
relative performance of the models is explained almost entirely by variance.
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 take- the-best has shown that heuristics work for precisely this reason. 
The other models considered opt to perform some form of optimiza-
tion over a rich collection of potential hypotheses. Yet take-the-best 
can make more accurate inferences by being specialized (and therefore 
biased), and limiting variance by ignoring information.

This observation is the basis for our assertion that “biased minds 
make better inferences” (Gigerenzer and Brighton, 2009, p. 107). More 
generally, several established statistical models use misspecified models 
in order to reduce variance. Ridge regression is one well-known exam-
ple, and works by limiting, or “squashing,” the fitted parameters’ values 
in a linear model (Hoerl and Kennard, 2000). By studying less-is-more 
effects, we are essentially exploring the question of how ignoring infor-
mation and limiting the use of computation resources can introduce 
bias, but offset this bias with a greater reduction in variance. Heuristics 
are one way of exploring this question. The study of ecological ration-
ality asks in which environments these heuristic tricks work, and in 
which will they fail. The notion of Homo heuristicus asserts that the 
cognitive system relies on such tricks in order to make accurate infer-
ences in uncertain environments, while at the same time using limited 
processing resources.

Homo Heuristicus relies on an adaptive toolbox

Let us return to our original proposition, that Homo heuristicus accurately 
captures fundamental aspects of human decision-making. We set the 
scene for this claim using examples of less-is-more effects, and explained 
them using the bias–variance dilemma. Throughout this discussion we 
have contrasted heuristics with optimization processes, and argued that, 
performing by ignoring information, limiting search, and relying on 
potentially impoverished representations of the world, an organism can 
make accurate inferences from limited observations. In our research 
group, this functional approach has been developed in parallel to a sig-
nificant body of empirical work investigating human use of heuristics. 
Although this discussion has centered on functional concerns, both 
approaches are essential to developing a more detailed understanding of 
what we term the adaptive toolbox, which is a metaphor used to concep-
tualize the stock processing strategies available to the organism.

Table 3.1 lists 10 heuristics we view as being in the adaptive toolbox 
of humans, along with some of the surprising findings they have led 
to. Some of these heuristics address the same task, but perform well in 
different kinds of environment. For example, tallying and  take-the-best 
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Table 3.1 Ten well-studied heuristics for which there is evidence that they are 
in the adaptive toolbox of humans. Each heuristic can be used to solve prob-
lems in social and nonsocial environments. See the references given for more 
information regarding their ecological rationality, and the surprising predic-
tions they entail.

Heuristic Definition1
Ecologically 
rational if:

Surprising findings 
(examples)

Recognition 
heuristic 
(Goldstein and 
Gigerenzer, 2002)

If one of two 
alternatives is 
recognized, infer 
that it has the 
higher value on 
the criterion.

Recognition 
validity >0.5

Less-is-more effect 
if �>�; systematic 
forgetting can be 
beneficial (Schooler 
and Hertwig, 2005).

Fluency heuristic 
(Jacoby and 
Dallas, 1981)

If both alternatives 
are recognized but 
one is recognized 
faster, infer that 
it has the higher 
value on the 
criterion.

Fluency validity 
>0.5

Less-is-more effect; 
systematic forgetting 
can be beneficial 
(Schooler and 
Hertwig, 2005)

Take-the-best 
(Gigerenzer and 
Goldstein, 1996) 

To infer which of 
two alternatives 
has the higher 
value: (1) search 
through cues in 
order of validity, 
(2) stop search 
as soon as a cue 
discriminates, 
and (3) choose the 
alternative this cue 
favors.

Cue validities are 
heavily skewed 
(Katsikopoulos 
and Martignon, 
2006; Martignon 
and Hoffrage, 
2002).

Often predicts more 
accurately than 
multiple regression 
(Czerlinski et al. 
1999); neural 
networks, exemplar 
models, and decision 
tree algorithms 
(Brighton, 2006).

Tallying (unit-
weight linear 
model, Dawes, 
1979)

To estimate a 
criterion, do not 
estimate weights 
but simply count 
the number of 
positive cues.

Cue validities 
vary little, low 
redundancy 
(Hogarth and 
Karelaia, 2005; 
2006).

Often predict with 
equal or greater 
accuracy than 
multiple regression 
(Czerlinski et al., 
1999).

Satisficing (Simon, 
1955; Todd and 
Miller, 1999)

Search through 
alternatives and 
choose the first 
one that exceeds 
your aspiration 
level.

Number of 
alternatives 
decreases rapidly 
over time, such as 
in seasonal mating 
pools (Dudey and 
Todd, 2002).

Aspiration levels can 
lead to significantly 
better choices than 
chance, even if they 
are arbitrary (e.g., the 
secretary problem, see 
Gilbert and Mosteller, 
1966; the envelope 
problem, see Bruss, 
2000).

AQ3

AQ4

Continued
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Table 3.1 Continued

Heuristic Definition1
Ecologically 
rational if:

Surprising findings 
(examples)

1/N; equality 
heuristic 
(DeMiguel et al., 
2009)

Allocate resources 
equally to each of 
N alternatives.

High 
unpredictability, 
small learning 
sample, large N.

Can outperform 
optimal asset 
allocation portfolios.

Default heuristic 
(Johnson and 
Goldstein, 2003)

If there is a default, 
do nothing.

Values of those 
who set defaults 
match those of 
the decision-
maker, when the 
consequences of a 
choice are hard to 
foresee.

Explains why mass 
mailing has little 
effect on organ donor 
registration; predicts 
behavior when 
trait and preference 
theories fail.

Tit-for-tat 
(Axelrod, 1984)

Cooperate first 
and then imitate 
your partner’s last 
behavior.

The other players 
also play tit-for-
tat; the rules of 
the game allow 
defection or 
cooperation but 
not divorce.

Can lead to a 
higher payoff 
than optimization 
(backward induction). 

Imitate the 
majority (Boyd 
and Richerson, 
2005)

Consider the 
majority of people 
in your peer group 
and imitate their 
behavior.

Environment is 
stable or only 
changes slowly; 
info search is 
costly or time-
consuming.

A driving force in 
bonding, group 
identification, and 
moral behavior.

Imitate the 
successful (Boyd 
and Richerson, 
2005)

Consider the most 
successful person 
and imitate his or 
her behavior.

Individual 
learning is slow; 
information 
search is costly or 
time-consuming.

A driving force in 
cultural evolution.

1 For formal definitions, see references.

both describe how decision-makers make paired comparisons, but 
their predictive relative accuracy will depend on the statistical proper-
ties of the environment. Other heuristics address different tasks, but 
share common design features. For example, an organism relying on 
the default heuristic makes no decision if the environment already sup-
plies a default option. An organism relying on the recognition heuris-
tic opts for a recognized alternative when the other is unrecognized. 
Both heuristics implement one-reason decision-making, which means 
that they focus on one source of information, rather than integrating 
several potentially relevant additional sources of information, when 
making a decision. Notice, also, that none of the heuristics in Table 3.1 
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implement the process of optimization. For a more thorough discus-
sion of the heuristics in Table 3.1, we refer the reader to Gigerenzer and 
Brighton (2009).

Several fundamental questions remain. For example, how do organ-
isms select between strategies in the adaptive toolbox, and how can 
we understand, more generally, the functional relationship between 
cognitive mechanisms and the structure of the environment? These 
two questions are closely related, and center on the basic question of 
understanding the adaptive relationship between an organism and its 
environment. Such issues are clearly not specific to the study of heuris-
tics, but the study of heuristics has proven a productive way of explor-
ing them. Faced with the problem of designing an organism capable of 
functioning in a certain environment, it would be functional to equip 
the organism with a rich and accurate model of its environment, such 
that the consequences of its actions could be predicted. Such certainty 
allows the organism “to look before you leap.” In highly uncertain 
environments, one must face the unavoidable conclusion that accurate 
models of the world are beyond reach, observations will be limited, and 
error is inevitable. The study of heuristics is the study of simple strate-
gies which respond to this problem, and the notion of Homo heuristicus 
proposes that these heuristics play a fundamental role in how the cog-
nitive systems of humans and other animals respond so successfully to 
environmental uncertainty.
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